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Neurotransmission in the carotid body and anesthesia
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Biology of the carotid body

The carotid body is located where the common carotid
artery bifurcates into the internal and external carotid
arteries. The location is very close to the carotid sinus
baroreceptor region. The carotid body has a distinct and
global structure, with some variations [2]. It senses the
changes in oxygen, carbon dioxide, and pH in the arte-
rial blood. These changes are converted into an increase
in the neural activity of the carotid sinus nerve. Figure 1
shows the gross anatomy of the carotid body (A) and
carotid chemoreceptor neural activity (B) recorded
from a whole carotid sinus nerve of a cat. Although
baroreceptor activity is also transmitted in the carotid
sinus nerve, in these recordings baroreceptor activity
was mechanically eliminated and only chemoreceptor
neural activity was recorded. Immediately after the
carotid body is exposed to hypoxia or hypercapnia, the
chemoreceptor nerve discharge increases. The signal is
sent to the nucleus tractus solitarius via the petrosal
ganglion, where the cell bodies of the chemosensory
afferent neurons are located. Increased chemoreceptor
neural activity during stimulation is a key function of
the carotid body. This is found across species, such as
the cat, dog, rat, rabbit, goat, pony (for a review, see
Gonzalez et al. [3]), and mouse [4,5]. However, there
appear to be species differences in the mechanisms of
chemoreception and chemotransduction in the carotid
body. The following are some examples. The expression
of voltage-gated ion channels differs among the rat,
rabbit, and cat. Hypoxia affects different types of
voltage-gated K� channels in these species [6]. Muscar-
inic receptors outnumber nicotinic receptors in the rab-
bit, but the opposite is true in the cat [7,8]. Dopamine is
a major catecholamine in the rabbit carotid body, but
more norepinephrine than dopamine is present in the
cat carotid body [3]. Because of these and other differ-
ences, physiological stimulation may cause variable cel-
lular and molecular changes in the carotid body of
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Introduction

Systemic hypoxia, which anesthesiologists wish to
avoid, is a potentially lethal situation for the patient.
During systemic hypoxia the carotid body, a primary
sensory organ for arterial hypoxia, sends a message to
the central nervous system and induces various re-
sponses in the cardiovascular, respiratory, renal, and
endocrine systems. This is a unique feature of the
carotid body. Many organs and cells detect hypoxia, but
their responses are usually directed to protect them-
selves. However, in the case of the carotid body, the
consequences of oxygen sensing are not confined to the
organ, but are used to protect other organs from irre-
versible damage. The ventilatory responses induced by
the excitation of the carotid body during acute hypoxia
are not foreign to the anesthesiologist. However, a role
of the carotid body in various health conditions and the
effects of medical agents on carotid body function do
not seem to be appreciated [1]. In this review, I will
present the basic biology of the carotid body and its
relationship with diseases. Subsequently, I will discuss
three of our studies showing the effects of medical
agents on chemotransmission in the carotid body. Not
all issues will be explained in detail. However, excellent
reviews and recent publications are cited in each section
for interested readers.
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different species. Nonetheless, evoked changes in the
carotid body must be transformed into an increased
chemoreceptor neural output to the brain in order to
accomplish the main function of the carotid body—
sensing chemical changes in the arterial blood and in-
forming the brain of them. Increased chemoreceptor
neural activity is integrated in the brain and induces
an impressive array of reflex responses. This aspect of
carotid body function has been reviewed elsewhere
[9–12].

Although the systemic responses induced by stimula-
tion of the carotid body are well known, the mecha-
nisms of chemoreception and chemotransmission in
the carotid body are still not clear, despite vigorous
investigation. Currently, many investigators believe that

neurotransmitters are involved in the excitation of
chemoreceptor afferent nerve endings. Glomus cells
(type I cells or chief cells) are putative chemoreceptor
cells, and they contain many kinds of neurotransmitters
(dopamine, norepinephrine, epinephrine, serotonin,
acetylcholine [ACh], substance P, gamma-aminobutyric
acid, enkephalins, ATP, etc.) [2,3,8,13]. The role of each
neurotransmitter in chemotransmission of the carotid
body has not yet been established. ACh, dopamine, and
substance P have been vigorously investigated and pro-
posed as possible excitatory neurotransmitters. The re-
lease of these neurotransmitters in response to hypoxia
or hypercapnia has been experimentally confirmed
[3,14,15]. On the basis of many pharmacological and
electrophysiological studies, it seems fair to say that
ACh, ATP, and substance P act as excitatory neu-
rotransmitters, and dopamine acts as an inhibitory
neurotransmitter. Several investigators have recently
summarized their views [8,16–18]. The release of neu-
rotransmitters from the glomus cell is assumed to be
regulated by intracellular calcium ([Ca2�]i), and many
experimental data support the concept. A close correla-
tion between [Ca2�]i level and catecholamine release
has been shown in cultured adult rabbit glomus cells
[19,20]. Further, the influx of Ca2� from the extracellu-
lar milieu appears essential for the release of neu-
rotransmitters during hypoxia, because the removal of
extracellular Ca2� inhibits the release of catecholamines
[21–25] and substance P [15]. Several reports indicate
that the influx of Ca2� via L-type voltage-gated Ca2�

channels is responsible for catecholamine release
[22,24,26]. However, glomus cells express several types
of Ca2� channels [27,28], and N-type calcium channels,
in addition to L-type Ca2� channels, appear to be re-
sponsible for the release of substance P [15]. Contrari-
wise, agents that mobilize Ca2� from intracellular stores
do not affect catecholamine release [29].

Because voltage-gated Ca2� channels are activated by
depolarization of the plasma membrane, mechanisms
involved in depolarizing the glomus cell have been a
major focus of investigation. López-Barneo et al. first
reported that voltage-gated K (Kv) channels of adult
rabbit glomus cells were inhibited by hypoxia [30].
Their studies and those of others have revealed the
basic characteristics and the O2-sensitivity of both the
Kv channels and the large-conductance Ca2�-activated
K (maxi-K) channels in rabbit, rat, and cat glomus cells
(for a review, see Shirahata and Sham [6]). These results
coalesced into the hypothesis that hypoxic inhibition of
Kv channels induces the depolarization of glomus cells.
Significant variability, however, was seen among species
[6]. Further, some investigators have questioned the
role of Kv or maxi-K channels in the hypoxic excitation
of glomus cells. The activation thresholds of these chan-
nels are approximately �30 mV. Therefore, most chan-

Fig. 1. A Gross anatomy of the carotid body (CB) and its
innervation. Chemoreceptor afferent information is carried in
the carotid sinus nerve (CSN), a branch of the IXth cranial
nerve, and reaches to the nucleus tractus solitarius (NTS) via
the petrosal ganglion (PG). The petrosal ganglion contains
the cell bodies of chemoreceptor afferent neurons and
baroreceptor neurons. Sympathetic nerves from the superior
cervical ganglion (SCG) innervate vessels within the carotid
body. APA, Ascending pharyngeal artery; CCA, common
carotid artery; CS, carotid sinus; ECA, external carotid artery;
ICA, internal carotid artery; NG, nodose ganglion. B
Chemoreceptor neural activity recorded from whole carotid
sinus nerves of anesthetized cats. At the arrows, the animals
were exposed to either 10% O2 or 10% CO2. Both hypoxia
and hypercapnia increase chemoreceptor neural activity. It is
known that chemoreceptor activity also increases with low
pH, high temperature, and high osmolarity; chemoreceptor
activity decreases with high glucose [13,18,39]
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nels would be closed at the normal resting membrane
potential of glomus cells (about �50 mV) [6]. Hypoxic
inhibition of these channels, which are mostly closed,
may not significantly influence the membrane potential.
In addition, the experimental results using Kv channel
and maxi-K channel blockers are controversial [31–34].
Recently, it was reported that hypoxia inhibited TASK-
like background K� channels [34,35] or voltage-gated
HERG-like channels [36]. These channels are active at
resting membrane potential, and their inhibition has
been proposed to initiate the depolarization of glomus
cells. These controversial data suggest that we do not
have a unified view of the mechanisms involved in glo-
mus cell depolarization in response to hypoxia (see also
Prabhakar [37]).

Health issues related to the carotid body

Basal ventilation

The contribution of the carotid body to basal ventilation
has been controversial. Some investigators claimed that
a minimal contribution came from the carotid body,
because transient hyperoxia caused only 10%–15%
reduction in ventilation in healthy human subjects
(for reviews, see Heath and Smith [2], Fitzgerald and
Lahiri [9], and Comroe [38]). However, in these studies
hyperoxia was assumed to eliminate carotid body
chemoreceptor neural activity. This, however, disagrees
with experimental data. Hyperoxia reduces chemo-
receptor neural activity, but never eliminates it (for
reviews, see Eyzaguirre et al. [13] and Fidone and
Gonzalez [39]). Recently, the contribution of the ca-
rotid body to the basal level of ventilation has been
reevaluated. When the carotid bodies of awake dogs
were bilaterally perfused with hypocapnic blood, the
ventilation decreased by 30% [40]. Further, bilateral
denervation of the carotid body caused hypoventilation
in the dog without recovery for up to 3 weeks [41].
Hypoventilation due to carotid body denervation was
observed in the rabbit [42], pony [43], goat [44], and
piglet [45]. These data indicate that the neural input
from the carotid body plays an important role not only
in increasing ventilation under hypoxic, hypercapnic,
and acidic conditions, but also in normal ventilation
(see also Forster et al. [46]).

Congenital disorders

Because carotid body function greatly influences many
other systems, malfunction of the carotid body or even
normal function of the carotid body can be associated
with health problems. Ventilatory abnormalities found
in some congenital disorders may be, at least in part,

due to a malfunction of the carotid body. A clear asso-
ciation between carotid body anatomy and congenital
hypoventilation syndrome was indicated recently. A
detailed examination was performed in two patients
with congenital hypoventilation syndrome [47]. Their
carotid bodies were small (�50% of control), and the
number of glomus cells was markedly decreased, to-
gether with a decrease in dense core vesicles (a storage
site of amine and peptide neurotransmitters). The num-
ber of sheath cells (type II cells or sustentacular cells),
which are glia-like cells in the carotid body, increased
twofold. On the other hand, no structural abnormalities
were observed in the area associated with respiratory
control in the central nervous system.

Prader-Willi syndrome is a genetic disorder with
abnormalities in chromosome 15 (1 :10 000 newborns).
Sleep-disordered breathing is often noted in these pa-
tients, and dysfunction of the carotid body and/or cen-
tral ventilatory integration has been suspected. Gozal et
al. tested 17 patients with Prader-Willi syndrome and
control subjects matched for age, sex, and body mass
[48]. Hypoxic, hyperoxic, and hypercapnic challenges
were compared. They found that patients with Prader-
Willi syndrome did not respond to these stimuli. These
observations indicate that abnormal ventilatory re-
sponses in these patients are, at least in part, due to
dysfunction of the carotid body.

Sudden infant death syndrome

In a more common pediatric disorder, sudden infant
death syndrome, some investigators have found either
an increased or a decreased volume of the carotid
body [49]. Overgrowth of sheath cells [50], reduction of
dense core vesicles and glomus cell numbers [51], and
increased content of dopamine and norepinephrine [52]
have also been reported. However, the results of later
studies with a larger number of subjects did not agree
with these studies [53,54]. The exact cause of sudden
infant death syndrome is not yet known, but it is likely
that subtle abnormalities exist in the cardiorespiratory
control systems [55–58]. Compromised carotid body
function may influence the stability of the respiratory
system in these patients. For example, parental smoking
is a major risk factor for this syndrome [57,59–61], and
animal experiments suggest that nicotine impairs ca-
rotid body function. Injection of nicotine into newborn
rats and developing lambs reduced the hypoxic or
hyperoxic ventilatory response [62,63]. Further, admin-
istration of nicotine to rats during gestation caused high
mortality in newborns exposed to hypoxia [64].

Hypertension

Functional abnormality of the carotid body has been
shown in patients with essential hypertension [65–67]. A
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series of studies was conducted comparing carotid body
function in young, mildly hypertensive subjects with
that in age-matched normotensive subjects. Ventilatory
and cardiovascular responses to hypoxia or hyperoxia
were examined. The results indicated that reflex re-
sponses evoked by carotid body stimulation were sig-
nificantly augmented in subjects with hypertension.
Although increased size of the carotid body and hyper-
plasia of sheath cells were noted in established hyper-
tensive subjects, it is not known whether the structural
changes occur in the carotid body in an early phase [2].
Interestingly, the carotid body of the spontaneously
hypertensive rat started to increase in size before the
onset of hypertension [68].

Obstructive sleep apnea

Obstructive sleep apnea syndrome is a major health
problem in the United States. A population study
showed that approximately 2% of women and 4% of
men suffer from this syndrome [69]. In Japan, lower
rates in women (0.5%) and men (3.28%) were reported
[70]. The disease is not rare in children, and a estimated
2%–4% of children are affected [71,72]. Patients with
obstructive sleep apnea syndrome have a loss of upper
airway muscle tone during sleep, resulting in collapse of
the airway. This obstruction causes progressive hypox-
emia and eventually evokes reflex arousal from sleep,
restoring muscle tone to the upper airway. The cycle of
sleep, airway obstruction, hypoxemia, and arousal is
repeated. In severe cases, the cycle is repeated hundreds
of times in a single night [73]. The carotid body plays an
essential role in arousal. This has been experimentally
shown in the dog [74] and the lamb [75]. In animals with
a denervated carotid body, arousal did not occur even
when oxygen saturation fell below 60%. The role of the
carotid body in arousal has also been shown in humans.
As mentioned above, patients with Prader-Willi syn-
drome lack the ventilatory response to acute hypoxia,
hyperoxia, and hypercapnia, and hypoxia is not
effective in arousing these patients from sleep [76]. A
possible vulnerability to hypoxic death during sleep
has been suggested for asthma patients with bilateral
carotid body resection, although systematic studies
are not available [77].

Carotid body excitation by hypoxemia during apnea
also has cardiovascular effects. Increases in blood pres-
sure and sympathetic discharge during airway obstruc-
tion in sleep are caused mainly by stimulation of the
carotid body [78,79]. Obstructive sleep apnea syndrome
is strongly associated with systemic hypertension. Al-
though some controversy still exists, recent studies indi-
cate that repeated excitation of the carotid body induces
a prolonged increase in basal sympathetic discharge and
daytime hypertension [80–83].

Because obstructive sleep apnea is a chronic disease,
an important question is whether the function of the
carotid body changes with time. In other words, does
repeated intermittent hypoxia, as seen in obstructive
sleep apnea syndrome, affect the function of the carotid
body? Although some studies suggest that modification
of carotid body function occurs [84], this is a new area of
investigation, and we do not have enough reliable infor-
mation at present. However, extensive investigation has
been performed in various laboratories, including ours,
and we can expect more information in the near future.

Anesthetic agents

Chemicals used as medicine could modify the function
of the carotid body. For example, many anesthetics,
such as halothane, enflurane, fentanyl, morphine, bar-
bital, and propofol, inhibit carotid body excitation [85].
These anesthetic agents are known to influence various
ion channels [85–88]. It is most likely that anesthetics
also affect ion channels in the glomus cell and in the
chemoreceptor afferent nerve endings. Few studies
have been reported, but Buckler et al. have recently
shown that halothane enhanced TASK-like K� chan-
nels in the rat glomus cell [35]. These channels are in-
hibited by hypoxia, hypercapnia, and acidosis and are
considered the critical channels for hypoxic excitation
of the rat glomus cell [89]. Halothane is known to inhibit
the hypoxia-induced increase in neural output from the
carotid body [90,91]. This phenomenon may be due to
the augmentation of TASK-like channels. Anesthetic
agents also influence the activity of ligand-gated ion
channels. Excitation of GABAA receptors and inhibi-
tion of neuronal nicotinic ACh receptors (nAChRs) are
associated with the mechanisms of general anesthesia
[92–94]. These receptors are also present in the carotid
body (see below).

Neuronal nAChRs in the carotid body and the effect
of nondepolarizing muscle relaxants.

Neuronal nAChRs in the carotid body

ACh is synthesized in glomus cells [95], stored in the
vesicles [96], and released on stimulation [14]. Exog-
enously applied ACh increases chemoreceptor afferent
activity in many species (for reviews, see Eyzaguirre et
al. [13] and Zapata [18]). Many studies have shown the
presence of nAChRs on glomus cells and afferent nerve
endings [7,97–101]. Blockers of nAChRs attenuate the
chemoreceptor neural response to hypoxia [102–105].
These data indicate that ACh is a major excitatory neu-
rotransmitter in the carotid body [16]. Hence, modifica-
tion of ACh metabolism in the carotid body would
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affect the role of endogenous ACh in chemoreceptor
neural activity. In this context it is important to under-
stand that many anesthetics as well as neuromuscular
blocking agents affect the function of nAChRs.

Nicotinic AChRs are ligand-gated cation channels
made from five receptor subunits (Fig. 2). Muscle-type
nAChRs are present on the muscle at neuromuscular
junctions. These receptors are among the best-studied
ligand-gated ion channels [106]. Nicotinic AChRs in
neurons are distinct from muscle-type nAChRs and are
divided into two types. One type is a heteromeric recep-
tor composed of two α and three � subunits. The second
type is a homomeric receptor made up of five α subunits
(α7, 8, or 9). Knowing the subunit composition of
nAChRs in a particular tissue is important, because the
permeability of the receptor to Ca2� and the effects of
agonists and antagonists depend on the subunit compo-
sition [107].

Although autoradiographic studies have suggested
the presence of nAChRs in the carotid body glomus cell
of the cat, rabbit, and rat [7,97–99], their subunit com-
position was not known. Recently, we have applied
molecular biological and immunocytological techniques
and have found that the α3, α4, �2, and �4 subunits are
localized in cat glomus cells (Hirasawa et al. [101] and
unpublished observations). These subunits of nAChRs
are widely distributed within the nervous system. It is
believed that α4�2 type nAChRs are the major type in
the central nervous system and that α3�4 type nAChRs
are mainly localized in the sympathetic nervous sys-
tem [107]. Although the exact structure of nAChRs in
the cat carotid body cannot be evaluated from our

molecular biological and immunohistological studies,
patch-clamp studies (measuring ACh-induced current)
and microfluorometric studies (measuring intracellular
Ca2�) suggest that α3�2 and possibly α4�2 nAChRs are
the functionally major types in the glomus cell of the cat
carotid body (Shirahata et al. [108] and unpublished
observations). On the other hand, nAChRs on the affer-
ent nerves appear to have a different subunit composi-
tion. Immunohistology showed that nerve fibers within
and between the glomeruli (a group of glomus cells
surrounded by sheath cells) expressed α7 subunits of
nAChRs, but glomus cells did not [100]. Further, immu-
noreactivity for α3, α4, α7, and �2 subunits of nAChRs
is found in the cell bodies of the majority of petrosal
ganglion neurons, suggesting that these subunits are
present in the chemosensory afferent neurons [100,101].

What are the roles of these nAChRs in chemotran-
smission of the carotid body? It appears that nAChRs in
glomus cells modulate the release of neurotransmitters.
It has been shown that the activation of nAChRs in-
creases intracellular Ca2� in glomus cells [108,109]. This
increase can trigger the release of neurotransmitters. In
fact, several reports indicate that nicotine increases the
release of catecholamines [99,110,111]. Further, the ac-
tivation of nAChRs in glomus cells may be involved
in hypoxia-triggered neurotransmitter release. Dinger
et al. showed that α-bungarotoxin inhibited hypoxia-
induced dopamine release by 50% [99]. Our prelimi-
nary studies suggest that α4�2 nAChRs contribute to
regulating catecholamine release during hypoxia [112].
Regarding a role of nAChRs in chemoafferent neurons,
Nurse and his colleagues showed persuasive data indi-

Fig. 2. Characteristics of nicotinic acetylcholine receptors
(nAChRs). The subunit composition of nAChRs substantially
differs in muscle-type and neuronal-type nAChRs. Nicotinic
AChRs are cation channels. Ca2� permeability varies de-
pending on the receptor type, and neuronal nAChRs are
highly permeable to Ca2� [107,140]. Acetylcholine (ACh)

binding sites are located at the interface between α and
non-α subunits. The EC50 for ACh varies significantly among
different types of nAChRs, experimental conditions, and
fitting models [141–147]. The affinity of antagonists also varies
among different nAChRs [107,148]. DH�E, Dihydro-�-
erythroidine
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cating that the activation of nAChRs in the chemore-
ceptor afferent neurons evokes action potentials in the
rat [96,113,114]. Our data also showed that ACh trig-
gered action potentials in some cat petrosal ganglion
neurons [115].

Vecuronium and the carotid body

During general anesthesia, muscle relaxants are often
used. Currently used neuromuscular blockers are be-
lieved to be specific for muscle-type nAChRs. However,
a series of studies in humans has shown that nonde-
polarizing neuromuscular blockers, such as vecuronium
and pancuronium, inhibit hypoxic ventilatory responses
at very low concentrations [116–118]. Igarashi et al. hy-
pothesized that vecuronium inhibits neuronal nAChRs
in the carotid body, leading to depression of hypoxic
ventilatory response [119]. To test this hypothesis,
chemoreceptor neural activity was recorded from per-
fused rat carotid bodies in vitro. When perfusion was
changed from hyperoxia to hypoxia, chemoreceptor
neural activity increased as expected. This increase
was significantly reduced when the carotid body was
pretreated with vecuronium. The effect was some-
what dose-dependent (Fig. 3A). Further experiments
confirmed that the inhibitory effect of vecuronium on
hypoxic chemotransmission acts via the inhibition of
nAChRs in the carotid body (Fig. 3B). ACh and nico-
tine increased chemoreceptor nerve activity, and this
increase was inhibited by vecuronium. Thus, vecur-
onium inhibits the hypoxic response of the carotid body
by blocking the nAChRs on the glomus cell and/or on

the chemoreceptor afferent nerve endings. In the
former case, vecuronium may attenuate the release of
excitatory neurotransmitter(s) by inhibiting a nAChR-
mediated increase in intracellular Ca2� and nAChR-
mediated depolarization of the glomus cell. In the latter
case, vecuronium may reduce action potentials by inhib-
iting nAChR-evoked depolarization.

Inhibition of chemoreceptor nerve activity by
vecuronium occurred at a dose lower than the ED50

for the phrenic nerve–hemidiaphragm preparation in
rats [120,121]. In humans, the ventilatory response to
hypoxia was depressed during continual administra-
tion of vecuronium with which a train-of-four-ratio
was maintained at 0.7 [116–118]. These studies indicate
that postoperative residual neuromuscular blockade
may be a significant risk factor for the development of
hypoxia.

Dopamine D2 receptors in the carotid body
and the effect of dopamine

Dopamine is one of the most abundant neurotransmit-
ters in the carotid body. It is synthesized in glomus cells
and released during hypoxic stimulation (for a review,
see Gonzalez et al. [3]). These facts suggested the pos-
sibility that dopamine was an excitatory neurotrans-
mitter. This possibility has been extensively explored
[3,18], but the preponderance of pharmacological and
electrophysiological data do not agree with the hypoth-
esis that dopamine is an excitatory neurotransmitter.
For example, exogenously applied dopamine usually

Fig. 3A,B. Effect of vecuronium on chemoreceptor neural
activity (CNA) in rats. Experiments were performed in vitro.
Data are reported as mean � SEM. N � 6 in all groups. A
Hypoxic response. Open bars, control; filled bars, vecuronium.
Hypoxia increased chemoreceptor neural activity and
vecuronium attenuated this response. B Cholinergic response.

Both acetylcholine (ACh) and nicotine increased chemo-
receptor neural activity. These increases were significantly
attenuated by vecuronium. Asterisk, significantly different
from control (P � 0.05). In the rat, 5.2 µM vecuronium
inhibited the contraction of the diaphragm by 50% [120].
Modified from Igarashi et al. [119], with permission
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reduces chemoreceptor neural activity (for reviews,
see Fidone et al. [8], Eyzaguirre et al. [13], Zapata
[18]). Dissociation between catecholamine release and
chemoreceptor neural response has also been reported
[122–124]. Based on all the data, the generally accepted
current understanding is that dopamine is an inhibitory
neurotransmitter in the carotid body. In certain condi-
tions (e.g., administration of a large dose), dopamine
could work as an excitatory neurotransmitter. This exci-
tatory effect may be mediated via one of the serotonin
receptors (5-HT3 receptors), but not via dopamine re-
ceptors [125]. Among five types of dopamine receptors,
the expression of mRNA for D2 receptors in the carotid
body has been shown in the rat, rabbit, and cat [126–
128]. Our immunocytochemical studies showed that D2
receptor proteins are present in cat glomus cells and
petrosal ganglion neurons (unpublished observations).
Although extensive effort has shown the expression of
D1 receptor mRNA in the rabbit, cat, and rat carotid
body [129], level of the expression is very low. Hence, it
is most likely that exogenously applied dopamine inhib-
its carotid chemoreceptor neural activity by activating
D2 receptors. D2 receptor agonists inhibit chemorecep-
tor neural activity [130], and inhibiting D2 receptors
increases spontaneous chemoreceptor neural activity at
any level of PO2 [131–133].

Dopamine is often used during surgery and in postop-
erative management. Ide et al. investigated whether a
clinical dose of dopamine affected carotid body func-
tion [134]. In anesthetized cats, continuous infusion of
dopamine (5µg·kg�1·min�1) significantly depressed the
chemoreceptor neural response to hypoxia (Fig. 4A).
This inhibition correlated well with the depression of
the hypoxic ventilatory response during dopamine infu-
sion (Fig. 4B). These results suggest that a clinical dose

of dopamine inhibits hypoxic ventilatory response by
activating D2 receptors in the carotid body. Consistent
with our studies, van de Borne et al. showed that
dopamine infusion (5µg·kg�1·min�1) depressed the ven-
tilatory response to hypoxia in normal subjects, and that
it depressed ventilation even during normoxia in pa-
tients with heart failure [135]. These data suggest that
close ventilatory monitoring is necessary for patients
receiving dopamine.

GABAA receptors in the carotid body and the effect
of benzodiazepines

Although its role in the carotid body is not known,
gamma-aminobutyric acid (GABA) is localized in glo-
mus cells [136]. Immunocytochemical experiments re-
vealed that GABAA receptors are localized in the nerve
fibers within the carotid body and some neurons in
the petrosal ganglion in the cat, suggesting that the
chemoreceptor afferent nerve has GABAA receptors
(unpublished observations). Because benzodiazepines
bind GABAA receptors, Igarashi et al. examined
whether benzodiazepines affected the hypoxic response
of the carotid body [137]. Relatively low doses of
midazolam and diazepam reduced the chemoreceptor
neural response to hypoxia (Fig. 5A). This depression
was reversed by bicuculline, a GABAA receptor antago-
nist (Fig. 5B). Therefore, it is reasonable to conclude
that midazolam and diazepam inhibit the hypoxic re-
sponse of the carotid body by activating GABAA recep-
tors on the chemoreceptor afferent. The well-known
ventilatory depression by benzodiazepines [138,139]
appears partly due to inhibition of chemoreceptor affer-
ent activity.

Fig. 4A,B. Effects of dopamine on chemoreceptor neural
activity (CNA) and ventilation. Experiments were performed
in anesthetized cats. A A continuous infusion of dopamine
(5 µg·kg�1·min�1) attenuated chemoreceptor neural activity
at any level of PaO2. B Dopamine (DA) infusion
(5 µg·kg�1·min�1) significantly attenuated the ventilatory

response to hypoxia. Open circles, control 1 (before dopamine
infusion); closed triangles, dopamine infusion; open squares,
control 2 (after dopamine infusion); asterisk, significantly
different from control 1 (P � 0.05); plus sign, significantly
different from control 2 (P � 0.05). Modified from Ide et al.
[134], with permission
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Summary and clinical implications

Recent investigations have revealed that the carotid
body plays a significant role in basal ventilation as well
as in various health conditions by changing the neural
output to the brain. Various neurotransmitters are criti-
cally involved in chemotransmission of the carotid
body. Medical agents used for anesthetic management
influence chemotransmission of the carotid body at
many different levels. I have give the following ex-
amples: vecuronium inhibits carotid body excitation by
blocking nAChRs in the carotid body; continuous infu-
sion of dopamine inhibits carotid body excitation possi-
bly by acting on D2 receptors in the carotid body; and
benzodiazepines inhibit carotid body excitation by acti-
vating GABAA receptors in the carotid body. In clinical
settings, these agents are usually used with other anes-
thetics that have various effects on ion channels and
other neurotransmitter receptors [85–88,92,93]. It is
known that halothane, enflurane, fentanyl, morphine,
barbital, and propofol inhibit carotid body excitation
[85]. Combined use of these anesthetics and some
agents described above (e.g., vecuronium) could pro-
foundly inhibit carotid chemoreceptor neural output.
Neurotransmission in the carotid body is complicated,
and many aspects are still under investigation. Under-
standing neurotransmission in the carotid body, as well
as assessing background health problems that are re-

lated to carotid body function, is important for the
perioperative management of respiratory function.
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